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Abstract
We propose a general formalism to compute exact correlation functions for
Cardy’s boundary states. Using the free-field construction of boundary states
and applying the Coulomb-gas technique, it is shown that charge neutrality
conditions pick up particular linear combinations of conformal blocks. As
an example we study the critical Ising model with free and fixed boundary
conditions, and demonstrate that conventional results are reproduced. This
formalism thus directly associates algebraically constructed boundary states
with correlation functions which are in principle observable or numerically
calculable.

PACS numbers: 11.10.Kk, 11.25.Hf, 68.35.Rh

1. Introduction

Modular invariance of partition functions plays extremely important roles in two-dimensional
conformal field theory (CFT). The ADE classification of modular invariants by Cappelli et al
[1, 2] (see also [3–5]) is obtained by considering CFTs on the torus. The classified modular
invariants correspond to particular sets of operators, which are supposed to model critical
systems in certain universality classes. Similar consideration also applies to CFTs defined on
a manifold with boundary. For a CFT on the cylinder, the constraints from modular invariance
lead to a classification of boundary states. This method was invented by Cardy [6] in the
eighties and developed by many in the nineties [7–12]. Such a classification of boundary
states with consistent modular properties has recently attracted much attention along with the
development of D-brane/string theory and various applications of boundary CFT to statistical
physics.

Boundary states with consistent modular properties, or consistent boundary states, are
normally believed to represent boundary conditions which may be physically imposed on
D-branes or borders of statistical systems. In order to understand the behaviour of observables
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in the presence of such a boundary, we need to find correlation functions for consistent
boundary states which are defined through Cardy’s classification. In principle this can be
accomplished by operator product expansions (OPEs), that is, by finding boundary operators
for a given boundary state, solving the constraints satisfied by coupling constants and then
obtaining the correlation functions by OPEs using the boundary operators. The correlation
functions obtained in this way are perturbative, that is, in the form of series expansion.
For practical use, we often need to know exact correlation functions and in such a case we
normally solve differential equations to find conformal blocks and fix their coefficients by
physical considerations [13]. In this differential equation method, however, the relation to
Cardy’s classification of boundary states is not quite evident.

In this paper, we present an alternative formalism for finding boundary correlation
functions1 directly using boundary states obtained by Cardy’s method. It is well known
in string theory that correlation functions are simply given by inserting vertex operators
within amplitudes (with or without boundaries). This picture is generalized to non-bosonic
(c �= 1) CFTs using the Coulomb-gas formalism on arbitrary Riemann surfaces (without
boundaries) [14–17]. The purpose of this paper is to present a method of calculating boundary
correlation functions based on the Coulomb-gas picture, by using the free-field representation
of boundary states developed in [18]. Driven by a similar motivation, Coulomb-gas system
on the half-plane is discussed in [19], where the Ising model conformal blocks are reproduced
using the contour integration technique of [20] and insertion of boundary operators. The
key ingredient of the formalism proposed in this paper is boundary states having boundary
charges, which account both for the contour integral expression of conformal blocks and for
their coefficients. The role of such boundary states has not been fully investigated so far in
this context, and our formalism allows a systematic study on the relation between correlation
functions and algebraically defined boundary states. In the following we shall mainly consider
Coulomb-gas systems on the unit disc, where Felder’s charged bosonic Fock space (CBFS)
construction [14] is readily used. Although our method itself is quite general, we shall focus
on presenting the ideas in simplest cases and show that it reproduces known results obtained
by the conventional approach.

We organize the rest of this paper as follows. In the next section we fix our notation and
review the free-field construction of boundary states [18]. We describe in section 3 our method
of computing correlation functions on the disc and on the half-plane. In section 4 we illustrate
the method using the Ising model and show that it reproduces the results of [13]. Finally in
section 5 we summarize and conclude.

2. Boundary states in Coulomb-gas formalism

Let us start, for the sake of self-containedness, by summarizing the Coulomb-gas construction
of boundary states [18]. The idea is to define coherent states in the charged bosonic Fock spaces
(CBFSs) and find conditions for their diffeomorphism invariance and modular consistency.

2.1. Coulomb-gas and charged bosonic Fock space

In the Coulomb-gas formalism [21], the Virasoro minimal models are realized by the action

S = 1

8π

∫
d2x

√
g(∂µ�∂µ� + 2

√
2α0 i�R) (1)

1 We use this term for correlation functions of bulk operators in the presence of boundary.
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where the scalar field �(x) is assumed to decouple into two chiral sectors, �(z, z̄) =
ϕ(z) + ϕ̄(z̄). The energy–momentum tensor is obtained by the variation of the action (1)
as

T (z) = −2πTzz = − 1
2 : ∂ϕ∂ϕ : +i

√
2α0∂

2ϕ. (2)

The central charge of this system is

c = 1 − 24α2
0 . (3)

The vertex operators

Vα(z) =: ei
√

2αϕ(z) : (4)

are chiral fields of conformal dimensions hα = α2 − 2α0α. In particular, the primary fields
φr,s(0 < r < p′, 0 < s < p) of a minimal model are realized by the vertex operators Vαr,s

(z)

with

αr,s = 1
2 (1 − r)α+ + 1

2 (1 − s)α− (5)

where α+ = √
p/p′, α− = −√

p′/p, and p and p′ (we assume p > p′) are the two coprime
integers characterizing the minimal model. The conformal dimensions of the operators are

hr,s = 1
4 (rα+ + sα−)2 − α2

0 (6)

which agree with the Kac formula.
The holomorphic chiral boson field is expanded in modes as

ϕ(z) = ϕ0 − ia0 ln z + i
∑
n �=0

an

n
z−n (7)

and likewise for the antiholomorphic counterpart,

ϕ̄(z̄) = ϕ̄0 − iā0 ln z̄ + i
∑
n �=0

ān

n
z̄−n. (8)

As we try to consider boundary CFT in the Coulomb-gas picture, a subtlety arises in the
treatment of zero-mode, since the zero-mode of �(z, z̄) does not naturally decouple into the
holomorphic and antiholomorphic sectors. In our formalism, we shall simply split it into
two identical and independent copies. In this sense, the boundary theory we shall consider is
not exactly a non-chiral theory on a manifold with boundary but rather a chiral theory on its
Schottky double2. We thus have two copies of Heisenberg operators, satisfying the algebra

[am, an] = mδm+n,0 [ϕ0, a0] = i

[ām, ān] = mδm+n,0 [ϕ̄0, ā0] = i
(9)

with no interaction,

[am, ān] = 0 [ϕ0, ā0] = [ϕ̄0, a0] = [ϕ0, ϕ̄0] = 0. (10)

In terms of the Heisenberg operators, the Virasoro operators are written as

Ln �=0 = 1

2

∑
k∈Z

an−kak −
√

2α0(n + 1)an (11)

L0 =
∑
k�1

a−kak +
1

2
a2

0 −
√

2α0a0 (12)

and likewise for the antiholomorphic counterparts.
2 The Schottky double is a Riemann surface obtained by doubling the manifold except for boundaries (see, e.g.,
[22]).
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The Hilbert space of CFT is realized in CBFSs with BRST projection [14]. For a chiral
theory the CBFS Fα;α0 is defined as a space obtained by operating with the creation operators
an<0 on the chiral highest weight state |α; α0〉 (see [14, 18, 23]). Since the boundary intertwines
the two chiral sectors, we need to construct non-chiral Fock spaces Fα,ᾱ;α0 in order to describe
boundary states. We denote the Möbius invariant non-chiral vacua with background charge
α0 as3 〈0, 0; α0| and |0, 0; α0〉, and define highest weight vectors 〈α, ᾱ; α0| and |α, ᾱ; α0〉 as

〈α, ᾱ; α0| = 〈0, 0; α0| e−i
√

2αϕ0 e−i
√

2ᾱϕ̄0 (13)

|α, ᾱ; α0〉 = ei
√

2αϕ0 ei
√

2ᾱϕ̄0 |0, 0; α0〉. (14)

The state 〈α, ᾱ; α0| has holomorphic and antiholomorphic charges −α and −ᾱ, respectively.
Likewise, |α, ᾱ; α0〉 has holomorphic and antiholomorphic charges α and ᾱ. Using the
Heisenberg algebra (9) it is easy to verify that these states satisfy

〈α, ᾱ; α0|a0 = 〈α, ᾱ; α0|
√

2α (15)

〈α, ᾱ; α0|ā0 = 〈α, ᾱ; α0|
√

2ᾱ (16)

a0|α, ᾱ; α0〉 =
√

2α|α, ᾱ; α0〉 (17)

ā0|α, ᾱ; α0〉 =
√

2ᾱ|α, ᾱ; α0〉. (18)

These highest weight vectors are eigenstates of the Virasoro zero-modes:

L0|α, ᾱ; α0〉 = (α2 − 2αα0)|α, ᾱ; α0〉 (19)

L̄0|α, ᾱ; α0〉 = (ᾱ2 − 2ᾱα0)|α, ᾱ; α0〉. (20)

The states |α, ᾱ; α0〉 are annihilated by an>0, ān>0, Ln>0, L̄n>0, and 〈α, ᾱ; α0| are annihilated
by an<0, ān<0, Ln<0, L̄n<0. The non-chiral CBFS Fα,ᾱ;α0 is built on the highest weight vector
|α, ᾱ; α0〉 by operating with an<0 and ān<0. The dual space F∗

α,ᾱ;α0
is defined similarly, by

acting with an>0 and ān>0 on 〈α, ᾱ; α0|. The non-chiral CBFSs thus defined are essentially
the direct products of chiral CBFSs, Fα,ᾱ;α0 = Fα;α0 ⊗ F̄ᾱ;α0 .

The inner products of highest weight vectors are subject to charge neutrality, i.e. they are
non-vanishing only if the net charges in the two sectors are both zero. The normalization of
the highest weight vectors must be in accordance with this condition and thus we have

〈α, ᾱ; α0|β, β̄; α0〉 = κδα,βδᾱ,β̄ . (21)

In particular, the vacua are normalized as

〈0, 0; α0|0, 0; α0〉 = κ. (22)

In unitary theories the constant κ is usually positive and we normalize it to unity. As the
Coulomb-gas system may well include non-unitary theories, κ can be negative. In that case
we choose κ = −1. Thus we have

U 〈α, ᾱ; α0|β, β̄; α0〉U = δα,βδᾱ,β̄ (23)

N 〈α, ᾱ; α0|β, β̄; α0〉N = −δα,βδᾱ,β̄ . (24)

The subscripts U and N stand for unitary and non-unitary sectors, respectively. These two
sectors have no intersection.
3 Here we give the same background charge α0 to both sectors. Even if we relax this condition and start by allocating
different background charges α0 and ᾱ0 to holomorphic and antiholomorphic sectors, respectively, condition (26)
restricts either α0 = ±ᾱ0. For α0 = −ᾱ0 we have 
 = −1 and α − ᾱ − 2α0 = 0 instead of (29) and (30). This
merely flips the sign of all antiholomorphic charges and thus does not give any new results.
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2.2. Diffeomorphism invariant boundary states

Boundary states appearing in CFT are diffeomorphism invariant in the following sense [6, 24].
Let us consider a CFT on the upper half-plane Im ζ � 0, where ζ is a complex coordinate,
ζ = x + iy, x, y ∈ R. The boundary is y = 0, or ζ = ζ ∗. Since the antiholomorphic coordinate
dependence ζ̄ on the upper half-plane may be mapped onto the holomorphic dependence ζ ∗

on the lower half-plane [13], we often identify ζ̄ with ζ ∗. Now, once the boundary is fixed, the
conformal symmetry of the theory should be restricted so that the boundary is kept fixed. In
other words, as the conformal transformation is generated by the energy–momentum tensor,
the energy–momentum flow across the boundary must vanish,

[T (ζ ) − T̄ (ζ̄ )]ζ=ζ̄ = 0. (25)

This may be translated into a condition on boundary states by mapping a semiannular domain
on the upper half-ζ -plane into a full annulus on the z-plane by z = exp(−2π iξ/L), ξ =
(T /π) ln ζ . The boundary of the ζ -plane is mapped to the two concentric circles
|z| = 1, exp(2πT/L) bordering the annulus on the z-plane. Since the z-plane allows radial
quantization, (25) is written as the condition on the boundary states |B〉 (on |z| = 1),

(Lk − L̄−k)|B〉 = 0. (26)

This condition, often called the Ishibashi condition, must then be satisfied by any boundary
state in CFT.

We may follow the standard construction of boundary states in open string theory [25–27]
and find boundary states on CBFS by starting from the coherent state ansatz

κ〈Bα,ᾱ;α0;
| = κ 〈α, ᾱ; α0|
∏
k>0

exp

(
− 1

k

akāk

)
(27)

|Bα,ᾱ;α0;
〉κ =
∏
k>0

exp

(
−


k
a−kā−k

)
|α, ᾱ; α0〉κ . (28)

The subscript κ is either U or N, specifying the normalization of the vacuum. As we have
expressions of the Virasoro operators (11), (12) written in terms of the Heisenberg operators,
one can see how the Virasoro modes Ln and L̄−n operate on the coherent states |Bα,ᾱ;α0;
〉κ
by an explicit computation. It is shown [18] that condition (26) is satisfied if


 = 1 (29)

and

α + ᾱ − 2α0 = 0. (30)

Similarly, we see that κ〈Bα,ᾱ;α0;
|(Ln − L̄−n) = 0 as long as (29) and (30) are satisfied. In the
following we shall only consider such manifestly diffeomorphism invariant boundary states
satisfying (29) and (30), and for simplicity we denote

κ〈B(α)| = κ〈Bα,2α0−α;α0;
=1| (31)

|B(α)〉κ = |Bα,2α0−α;α0;
=1〉κ . (32)

We note that the sum of the (holomorphic + antiholomorphic) boundary charges agrees
with the topological background charge on the Schottky double. Due to condition (30), an
inner boundary (on the z-plane) contributes 2α0 to the sum of the charges, and an outer
boundary contributes −2α0. When we consider an annulus whose Schottky double is a torus,
the sum of the boundary charges is zero (2α0 −2α0 = 0), which coincides with the background
charge of the torus expected from the Gauss–Bonnet theorem (the Euler number of a torus
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vanishes). For a disc, there is only an outer boundary which gives a charge −2α0. This agrees
with the background charge of a sphere, which is the Schottky double of the disc. Thus, the
geometry of the bulk can be assumed to be flat everywhere, since the curvature of the manifold
is concentrated on the boundary.

2.3. Ishibashi states in free-field representation

As the basis of boundary states in CFT is normally spanned by Ishibashi states, we need to
construct Ishibashi states in terms of our Fock space representation in order to translate the
existing results of boundary CFT into the Coulomb-gas language. At least for the diagonal
minimal models, it is shown [18] that the Ishibashi states are expressible as linear combinations
of |B(α)〉κ , as far as partition functions on the cylinder are concerned.

Ishibashi states are defined for chiral representations of CFT and diagonalize the cylinder
amplitudes (overlaps) to give characters,

〈〈i|(q̃1/2)L0+L̄0−c/12|j 〉〉 = δijχj (q̃). (33)

Here, we are considering a cylinder of length T and circumference L, or equivalently, an
annulus on the z-plane with 1 � |z| � exp(2πT/L). As the Hamiltonian is written as
H = (2π/L)(L0 + L̄0 − c/12), the left-hand side of (33) is 〈〈i| e−T H |j 〉〉 with q̃ = e−4πT/L.
The characters of the minimal models are given by Rocha-Caridi [28],

χ(r,s)(q) = Tr(r,s)qL0−c/24

= �pr−p′s,pp′(τ ) − �pr+p′s,pp′(τ )

η(τ )
(34)

where �λ,µ(τ ) and η(τ) are the Jacobi theta function and the Dedekind eta function, defined
as �λ,µ(τ ) ≡ ∑

k∈Z
q(2µk+λ)2/4µ and η(τ) ≡ q1/24 ∏

n�1(1 − qn), with q = e2π iτ . Thus, the
cylinder amplitudes (33) are power series in q̃, divided by η(τ̃ ).

As our boundary states |B(α)〉κ are defined in a Fock space representation, we may
explicitly compute the cylinder amplitudes between such states. They are [18]

κ〈B(α)| e−T H |B(β)〉κ = κ 〈B(α)|(q̃1/2)L0+L̄0−c/12|B(β)〉κ
= q̃(α−α0)

2

η(τ̃ )
κδα,β. (35)

The amplitudes between unitary and non-unitary sectors (e.g. U 〈B(α)| e−T H |B(β)〉N ) vanish
because these sectors do not intersect. Note that q(α−α0)

2
/η(τ ) is the character χα;α0(q) of

the chiral CBFS Fα;α0 . In this sense, the state |B(α)〉κ may be regarded as the Ishibashi state
of Fα;α0 .

We may now compare expressions (33) and (35) to find a possible free-field representation
of the Ishibashi states of minimal models. Defining

〈〈(r, s)| = U 〈ar,s | + N 〈ar,−s | (36)

and

|(r, s)〉〉 = |ar,s〉U + |ar,−s〉N (37)

with

U 〈ar,s | =
∑
k∈Z

U 〈B(αr,s + k
√

pp′)| (38)

N 〈ar,−s | =
∑
k∈Z

N 〈B(αr,−s + k
√

pp′)| (39)
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|ar,s〉U =
∑
k∈Z

|B(αr,s + k
√

pp′)〉U (40)

|ar,−s〉N =
∑
k∈Z

|B(αr,−s + k
√

pp′)〉N (41)

where αr,s are given by (5), one can show that the states |(r, s)〉〉 diagonalize the overlaps and
give minimal model characters

〈〈(r, s)|(q̃1/2)L0+L̄0−c/12|(r ′, s ′)〉〉 = δrr ′δss ′χ(r,s)(q̃). (42)

The appearance of the non-unitary sector even in unitary CFTs may seem odd, but this is
necessary to describe cylinder diagrams where otherwise unphysical states would propagate.
On the disc the non-unitary sector decouples and does not contribute to correlation functions
(section 3). The states (36), (37) are a good candidate for the minimal model Ishibashi states
as far as the modular properties are concerned. We, however, immediately note that such
‘Ishibashi’ states are not unique since |(r, s)〉 and |(p′ − r, p − s)〉 give rise to the same
character but are perpendicular to each other. In order to have a unique Ishibashi state for each
primary field (r, s) ∼ (p′ − r, p − s) of minimal models, we define the symmetrized states

〈〈φr,s | = 〈〈φp′−r,p−s |
= 1√

2
(〈〈(r, s)| + 〈〈(p′ − r, p − s)|) (43)

|φr,s〉〉 = |φp′−r,p−s〉〉
= 1√

2
(|(r, s)〉〉 + |(p′ − r, p − s)〉〉) (44)

and shall regard them as our free-field realization of the Ishibashi states. Although this
‘symmetrization’ was not considered in [18], such a prescription to ensure the equivalence of
(r, s) ∼ (p′ − r, p − s) is necessary.

2.4. Cardy’s consistent boundary states

Physical boundary states in CFT are not only diffeomorphism invariant, but must also satisfy
an extra constraint called Cardy’s consistency condition. We consider a cylinder of length T
and circumference L as before and assume that boundary conditions α̃ and β̃ are imposed on
the two boundaries. Then, depending on how we define the direction of time, the partition
function on this cylinder may be written in two different ways. We may first regard the cylinder
as an open string propagating in the periodic direction of time, with boundary conditions α̃

and β̃ imposed at the two ends of the string. The partition function is then a sum of the chiral
characters, Zα̃β̃(q) = ∑

j n
j

α̃β̃
χj (q), where χj(q) is the character for the chiral representation

j and n
j

α̃β̃
is a non-negative integer representing the multiplicity of the representations. We

have defined q = e−πL/T . We may also see the cylinder as a closed string propagating
from one boundary (with boundary condition β̃) to the other (with α̃). Then the partition
function is simply the cylinder amplitude between the two boundaries, 〈α̃| e−T H |β̃〉. Due to
the equivalence of the two pictures, we have

∑
j n

j

α̃β̃
χj (q) = 〈α̃|(q̃1/2)L0+L̃0−c/12|β̃〉. This is

the consistency condition which needs to be satisfied by the boundary states 〈α̃| and |β̃〉.
If we have an appropriate basis of the boundary states, the right-hand side of the

consistency equation may be expanded using the basis states {〈a|}, {|b〉} as∑
j

n
j

α̃β̃
χj (q) =

∑
a,b

〈α̃|a〉〈a|(q̃1/2)L0+L̄0−c/12|b〉〈b|β̃〉. (45)



6882 S Kawai

Solving this equation, the consistent boundary states {|α̃〉} are found as linear combinations
of the basis states. It is convenient to use the Ishibashi states for such a basis. For diagonal
minimal models, using the property (33) of the Ishibashi states and the modular transformation
of the characters χi(q) = ∑

j Sijχj (q̃) under τ → τ̃ = −1/τ , we have, by equating the
coefficients of the characters,∑

i

ni

α̃β̃
Sij = 〈α̃|j 〉〉〈〈j |β̃〉. (46)

Assuming the existence of a state |0̃〉 such that ni

0̃α̃
= ni

α̃0̃
= δi

α̃ , (46) was solved by Cardy [6]
as

|α̃〉 =
∑

j

|j 〉〉〈〈j |α̃〉 =
∑

j

Sαj√
S0j

|j 〉〉. (47)

Now, as the minimal model Ishibashi states have been written in the free-field representation
(43), (44), Cardy’s consistent boundary states (47) can also be expressed using our coherent
boundary states by substituting (44) into (47).

For the convenience of later discussions, let us spell out these in the specific example
of the Ising model. The Ising model is the simplest non-trivial minimal model having the
central charge c = 1/2 and is characterized by the two coprime integers p = 4 and p′ = 3.
There are three operators, the identity I, the energy ε and the spin σ , having the conformal
dimensions 0, 1/2 and 1/16, respectively, and are identified in the Kac table as I = φ1,1 =
φ2,3, ε = φ2,1 = φ1,3 and σ = φ1,2 = φ2,2. Using the modular transformation matrices for
the characters, Cardy’s boundary states are written as [6]

|Ĩ 〉 = |0̃〉 = 2−1/2|I 〉〉 + 2−1/2|ε〉〉 + 2−1/4|σ 〉〉 (48)

|ε̃〉 = 2−1/2|I 〉〉 + 2−1/2|ε〉〉 − 2−1/4|σ 〉〉 (49)

|σ̃ 〉 = |I 〉〉 − |ε〉〉. (50)

It is argued that the first two states correspond to the fixed (up and down) boundary conditions
since they differ only in the sign of |σ 〉〉 which is associated with the spin operator. The last
state (50) is then identified as the free boundary state. Using (37) and (44), these states are
written in our free-field representation as

|Ĩ 〉 = 2−1(|a1,1〉U + |a1,−1〉N + |a2,3〉U + |a2,−3〉N + |a2,1〉U + |a2,−1〉N + |a1,3〉U + |a1,−3〉N)

+ 2−3/4(|a1,2〉U + |a1,−2〉N + |a2,2〉U + |a2,−2〉N) (51)

|ε̃〉 = 2−1(|a1,1〉U + |a1,−1〉N + |a2,3〉U + |a2,−3〉N + |a2,1〉U + |a2,−1〉N + |a1,3〉U + |a1,−3〉N)

− 2−3/4(|a1,2〉U + |a1,−2〉N + |a2,2〉U + |a2,−2〉N) (52)

|σ̃ 〉 = 2−1/2(|a1,1〉U + |a1,−1〉N + |a2,3〉U + |a2,−3〉N − |a2,1〉U
− |a2,−1〉N − |a1,3〉U − |a1,−3〉N) (53)

where the states on the right-hand sides are defined by (40), (41). They are superpositions of
countably many coherent states with different boundary charges.

3. Boundary correlation functions

Now let us discuss how to compute boundary correlation functions in our Coulomb-gas picture.
After giving the general formalism, we shall focus on the one-point function of φr,s(z, z̄) and



Free-field realization of boundary states and boundary correlation functions of minimal models 6883

(a) Conformal block II (b) Conformal block III

Figure 1. The two conformal blocks II and III in the boundary two-point function of φ1,2 on the
disc. The sphere represents the double of the disc, and the upper and lower hemispheres stand for
the holomorphic and antiholomorphic sectors, which are glued on the boundary (the equator). The
lower hemisphere coordinates z∗

i are obtained from z̄i by the doubling (zi , z̄i ) → (zi , z
∗
i ). In the

case of II where the screening operator Q− lies in the holomorphic sector, the integration contour
can be deformed into the Pochhammer type around z1 and z2. The integral is then proportional to
the one from z2 to z1 (a). Similarly, the screening contour of III is in the antiholomorphic sector
and the integral is proportional to the one from z∗

2 to z∗
1 (b).

the two-point function of φ1,2(z, z̄), and derive their explicit expressions on the unit disc. Once
correlators on the disc are obtained, it is straightforward to map them on the half-plane. At
the end of this section, we compare our free-field approach and OPE computation of boundary
correlation functions.

3.1. Screened vertex operators and BRST states

In the CBFS language, correlation functions on the full plane are described as follows [14].
We define chiral screened vertex operators V m,n

r,s (z) as

V m,n
r,s (z) =

∮ m∏
i=1

dui

n∏
j=1

dvjVr,s(z)V+(u1) · · ·V+(um)V−(v1) · · · V−(vn) (54)

where for conciseness we have denoted Vαr,s
(z) as Vr,s(z) and Vα±(z) as V±(z), and the

integration contours are those of Felder’s, all going through z and encircling the origin (figure 1
of [14]). Such an operator is a primary field of conformal dimension hr,s . We also denote
the chiral CBFS Fαr,s ;α0 as Fr,s . The operator V m,n

r,s (z) defines a map from one Fock space to
another,

V m,n
r,s (z) : Fr0,s0 → Fr0+r−2m−1,s0+s−2n−1. (55)

The p-point correlator

〈0; α0|V m1,n1
r1,s1

(z1) · · ·V mp,np

rp,sp
(zp)|0; α0〉 (56)

is then seen as a sequence of mappings,

F1,1 → Frp−2mp,sp−2np
→ · · · (57)

and the final state V m1,n1
r1,s1

(z1) · · ·V mp,np

rp,sp
(zp)|0; α0〉 must belong to F1,1 in order to have a

non-trivial inner product with 〈0; α0| ∈ F ∗
1,1 (the dual module of F1,1). The same p-point

correlator may be expressed differently as

〈αp′−1,p−1; α0|V m′
1,n

′
1

r1,s1 (z1) · · · V m′
p,n′

p

rp,sp
(zp)|0; α0〉 (58)



6884 S Kawai

but this is in fact proportional to (56). A key object in this formalism is the BRST operator

Qr = e2π iα2
+r − 1

r
(
e2π iα2

+ − 1
)

∮ r∏
i=1

duiV+(u1) · · · V+(ur) (59)

which maps Fr,s to F−r,s . The BRST operator is nilpotent, QrQp′−r = 0, and physical states
are realized as the cohomology space, Ker Qr/Im Qp′−r . An important point which is evident
in this picture is that all intermediate states appearing in the correlator are BRST states since
the vacuum |0; α0〉 is a BRST state and the screened vertex operators map BRST states to
BRST states [14].

We shall combine the above machinery and the boundary states of the previous section to
compute correlation functions on the unit disc. The in-state of the correlators is the non-chiral
vacuum (in the unitary sector) at the origin, |0〉 = |0, 0; α0〉U , which is a BRST state. For the
out-state, we choose a boundary state U 〈B(α)| of (31) with a fixed boundary charge α. We
only consider the unitary sector since the non-unitary sector does not give non-trivial inner
products with the in-state vacuum. The correlators are then obtained by inserting non-chiral
screened vertex operators

V (mi,ni ),(m̄i ,n̄i )

(ri,si ),(r̄i ,s̄i )
(zi , z̄i ) = V mi,ni

ri ,si
(zi)V̄

m̄i ,n̄i

r̄i ,s̄i
(z̄i ) (60)

between U 〈B(α)| and |0, 0; α0〉U . As we focus on diagonal theories, the antiholomorphic
vertex operators have the same conformal dimensions as the holomorphic counterparts, i.e.,
either (r̄i , s̄i ) = (ri , si) or (r̄i , s̄i ) = (p′ − ri , p − si). Note that, in this construction, all the
intermediate states are manifestly BRST invariant because no spurious states arise. Actual
boundary p-point correlation functions for physical boundary conditions are obtained by
summing the fixed boundary-charge correlators,

U 〈B(α)|
p∏

i=1

V mi,ni

ri ,si
(zi)V̄

m̄i ,n̄i

r̄i ,s̄i
(z̄i)|0, 0; α0〉U (61)

over the boundary charges according to the linear combinations (such as (51)–(53)) given by
Cardy’s method. Note that (61) is non-vanishing only for certain configurations of screening
charges. The net holomorphic and antiholomorphic charges are respectively,

−α +
∑

i

αri ,si
+

∑
i

miα+ +
∑

i

niα− (62)

and

α − 2α0 +
∑

i

αr̄i ,s̄i
+

∑
i

m̄iα+ +
∑

i

n̄iα− (63)

which must vanish independently. These charge neutrality conditions associate the allowed
values of α with the numbers of holomorphic and antiholomorphic screening operators.

In the computation of expression (61), Vr,s(z)V̄r,s(z̄), Vr,s(z)V̄p′−r,p−s(z̄),
Vp′−r,p−s (z)V̄r,s(z̄) and Vp′−r,p−s(z)V̄p′−r,p−s(z̄) all correspond to a non-chiral field φr,s(z, z̄)

and one may use any combinations. This is ensured by the fact that (61) is essentially a chiral
2p-point function where the equivalence of (r, s) ↔ (p′ − r, p − s) (after the truncation of
unphysical states) is guaranteed [14, 21]. In particular, we are allowed to use Vr,s(z) as the
holomorphic and V̄p′−r,p−s (z̄) as the antiholomorphic (‘mirror image’) part of a single non-
chiral operator (the analogy of a mirror and a boundary of CFT is based on the conformal Ward
identity [13] which does not distinguish V̄r,s(z̄) from V̄p′−r,p−s (z̄)). Due to this equivalence,
apparently different choices of vertex operators should all lead to a same conformal block
function. In practice, similar to the case of the Coulomb-gas computation without boundary,
we shall choose such vertex operators that the number of screening operators is minimized.
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In the following subsections we shall evaluate expression (61) for particular cases of one- and
two-point functions.

3.2. Boundary one-point functions

For evaluation of the boundary one-point correlator

U 〈B(α)|V m,n
r,s (z)V̄

m̄,n̄
r̄,s̄ (z̄)|0, 0; α0〉U (64)

it is convenient to choose (r̄, s̄) = (p′ − r, p − s) (the other choice (r̄, s̄) = (r, s) should
lead to the same result but involves complicated integral expressions). According to (55), the
holomorphic part of the CBFS is mapped as

F1,1 → Fr−2m,s−2n (65)

and the antiholomorphic part is mapped as

F̄1,1 → F̄p′−r−2m̄,p−s−2n̄. (66)

Since U 〈B(α)| ∈ F ∗
α;α0

⊗ F ∗
2α0−α;α0

, the correlator is non-vanishing only when Fα;α0 =
Fr−2m,s−2n and F̄2α0−α;α0 = F̄p′−r−2m̄,p−s−2n̄, that is,

α = 1
2 (1 − r + 2m)α+ + 1

2 (1 − s + 2n)α− (67)

and

2α0 − α = 1
2 (1 − p′ + r + 2m̄)α+ + 1

2 (1 − p + s + 2n̄)α−. (68)

Summing (67), (68) and using α+ = √
p/p′, α− = −√

p′/p, we have (m + m̄)α+ +
(n + n̄)α− = 0, or

m + m̄ = 0 n + n̄ = 0 (69)

implying no screening charges. Then from (67) we have α = αr,s , and the correlator (64) is
evaluated as

U 〈B(αr,s )|V 0,0
r,s (z)V̄

0,0
r̄,s̄ (z̄)|0, 0; α0〉U = (1 − zz̄)−2h (70)

where h = αr,s (αr,s −2α0). As we shall see later, this is proportional to the two-point correlator
on the full plane.

3.3. Boundary two-point functions of φ1,2

As a less trivial case, we consider the two-point correlator of the primary field φ1,2.
For the convenience of calculation we define one of the operators as φ1,2(z1, z̄1) =
V1,2(z1)V̄p′−1,p−2(z̄1) and the other as φ1,2(z2, z̄2) = V1,2(z2)V̄1,2(z̄2). Expression (61) then
becomes

U 〈B(α)|V m1,n1
1,2 (z1)V̄

m̄1,n̄1
p′−1,p−2(z̄1)V

m2,n2
1,2 (z2)V̄

m̄2,n̄2
1,2 (z̄2)|0, 0; α0〉U . (71)

In the holomorphic and antiholomorphic sectors, the CBFSs are mapped as

F1,1 → F1−2m2,2−2n2 → F1−2m1−2m2,3−2n1−2n2 (72)

F̄1,1 → F̄1−2m̄2,2−2n̄2 → F̄p′−2m̄1−2m̄2−1,p−2n̄1−2n̄2−1 (73)

and hence, in order that the correlator be non-vanishing we must have

α = (m1 + m2)α+ + (n1 + n2 − 1)α− (74)

2α0 − α = (m̄1 + m̄2 + 1)α+ + (n̄1 + n̄2 + 1)α−. (75)
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Adding the above two expressions we have (m + m̄)α+ + (n + n̄ − 1)α− = 0, where m =
m1 + m2 and n = n1 + n2 are the numbers of positive (α+) and negative (α−) screening
operators in the holomorphic sector, and similarly m̄ = m̄1 + m̄2 and n̄ = n̄1 + n̄2 for the
antiholomorphic counterparts. This charge neutrality condition implies

m + m̄ = 0 n + n̄ = 1. (76)

Then we have two possibilities:

(I) m = m̄ = n̄ = 0 n = 1 (77)

(II) m = m̄ = n = 0 n̄ = 1. (78)

From (74), we have the boundary charge α = α1,1 = 0 for (I) and α = α1,3 = −α− for (II).
For the charge configuration (I), we have one screening operator

Q− =
∮

dvV−(v) (79)

in the holomorphic sector and thus the correlator (71) takes the form

II = U 〈B(α1,1)|
∮

dvV1,2(z1)V̄p′−1,p−2(z̄1)V−(v)V1,2(z2)V̄1,2(z̄2)|0, 0; α0〉U (80)

which, by an explicit calculation, reduces to∮
dv(1 − z1z̄1)

a(1 − z1z̄2)
b(1 − vz̄1)

c(1 − vz̄2)
d(1 − z2z̄1)

a(1 − z2z̄2)
b(z1 − v)d

× (z1 − z2)
b(v − z2)

d(z̄1 − z̄2)
a (81)

with a = 2α1,2(2α0 − α1,2), b = 2α2
1,2, c = 2α−(2α0 − α1,2) and d = 2α−α1,2. As this

expression is analytic, we may deform the integration contour as long as it is closed and
non-contractible. In this case the screening operator must lie entirely on the holomorphic part
and Felder’s contour can be deformed into the Pochhammer type, going around z1 and z2. The
correlator is then proportional to the integration from z2 to z1, and is written as

II = NI(1 − z1z̄1)
a(1 − z1z̄2)

b(1 − z2z̄1)
a(1 − z2z̄2)

b(z1 − z2)
b(z̄1 − z̄2)

a

×
∫ z1

z2

dv(1 − vz̄1)
c(1 − vz̄2)

d(z1 − v)d(v − z2)
d . (82)

Here, NI is a constant arising from the deformation of the contour. Note that, at this point,
the expression is similar (in fact, proportional) to the integral representation of a chiral four-
point conformal block [21] (without boundary). One may then proceed in the standard
manner, namely, by fixing the projective SL(2, C) gauge, performing the integration and then
recovering the coordinate dependence. We thus have

II = NI(1 − z1z̄1)
a(1 − z2z̄2)

a[η(η − 1)]a
�(1 − α2

−)2

�(2 − 2α2−)
F (2a, 1 − α2

−, 2 − 2α2
−; η) (83)

where F = 2F1 is the hypergeometric function of the Gaussian type, and η is defined as

η = (z1 − z2)(z̄2 − z̄1)

(1 − z1z̄1)(1 − z2z̄2)
. (84)

The calculation for (II) goes similarly. As we have one screening operator

Q̄− =
∮

dv̄V̄−(v̄) (85)
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in the antiholomorphic sector, the correlator is written as

III = U 〈B(α1,3)|
∮

dv̄V1,2(z1)V̄p′−1,p−2(z̄1)V̄−(v̄)V1,2(z2)V̄1,2(z̄2)|0, 0; α0〉U
= NII(z1 − z2)

b(z̄1 − z̄2)
a(1 − z1z̄1)

a(1 − z1z̄2)
b(1 − z2z̄1)

a(1 − z2z̄2)
b

×
∫ z̄1

z̄2

dv̄(z̄1 − v̄)c(v̄ − z̄2)
d(1 − z1v̄)d(1 − z2v̄)d . (86)

We have again deformed Felder’s integration contour (this time in the antiholomorphic sector)
into the Pochhammer contour around z̄1 and z̄2. The resulting integral is proportional to the
one from z̄2 to z̄1, and NII is a constant. Performing the integration we have

III = NII(1 − z1z̄1)
a(1 − z2z̄2)

a[η(η − 1)]a(−η)b−a
�(1 − α2

−)�(3α2
− − 1)

�(2α2−)

×F(α2
−, 1 − α2

−, 2α2
−; η). (87)

The two correlators II and III with fixed boundary charges are represented schematically (in
the Schottky double picture) in figure 1. They correspond to the two conformal blocks of the
chiral four-point function.

3.4. Correlation functions on the half-plane

Boundary correlation functions obtained on the unit disc are mapped on the half-plane by the
global conformal transformation

w = −iy0
z − 1

z + 1
w̄ = iy0

z̄ − 1

z̄ + 1
(88)

which takes the unit circle |z| = 1 on the z-plane to the infinite line Im w = 0 on the w-plane,
and the origin z = 0 to the point w = iy0, y0 ∈ R. Under this transformation the holomorphic
coordinate dependence on the unit disc is mapped onto the upper half-w-plane, and the
antiholomorphicdependence is mapped onto the lower half-w̄-plane. Using the transformation
(88), p-point correlation functions on the half-plane are written using those on the z-plane, i.e.
on the disc, as

〈φ1(w1, w̄1) · · ·φp(wp, w̄p)〉UHP =
p∏

i=1

(
dwi

dzi

)−hi
(

dw̄i

dz̄i

)−h̄i

〈φ1(z1, z̄1) · · · φp(zp, z̄p)〉disc

=
p∏

i=1

{
2y0

(zi + 1)(z̄i + 1)

}−2hi

〈φ1(z1, z̄1) · · · φp(zp, z̄p)〉disc (89)

where we have assumed hi = h̄i . The parameter η of (84) is mapped under this transformation
as

η = (z1 − z2)(z̄2 − z̄1)

(1 − z1z̄1)(1 − z2z̄2)
= (w1 − w2)(w̄1 − w̄2)

(w1 − w̄1)(w2 − w̄2)
(90)

which is an anharmonic ratio of the four points w1, w2, w̄1 and w̄2.
Now, the boundary one-point function of φr,s on the upper half-plane is easily found by

using (70) as

〈φr,s(w, w̄)〉B(αr,s) =
{

2y0(1 − zz̄)

(z + 1)(z̄ + 1)

}−2h

= [−i(w − w̄)]−2h

= (2y)−2h (91)
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where h = hr,s = αr,s (αr,s − 2α0) is the conformal dimension of the operator φr,s , and
w = x +iy, w̄ = w∗ = x − iy, x, y ∈ R. Note that the result is y0 independent. The two-point
function of φ1,2 on the disc is mapped onto the half-plane similarly. For the conformal block
(I) we have

〈φ1,2(w1, w̄1)φ1,2(w2, w̄2)〉B(α1,1) =
{

4y2
0

(z1 + 1)(z̄1 + 1)(z2 + 1)(z̄2 + 1)

}−2h

II

= NI

{
(w1 − w̄1)(w̄2 − w2)

(w1 − w2)(w̄1 − w̄2)(w1 − w̄2)(w̄1 − w2)

}2h

× �(1 − α2
−)2

�(2 − 2α2−)
F (−4h, 1 − α2

−, 2 − 2α2
−; η) (92)

and for (II) we have

〈φ1,2(w1, w̄1)φ1,2(w2, w̄2)〉B(α1,3) =
{

4y2
0

(z1 + 1)(z̄1 + 1)(z2 + 1)(z̄2 + 1)

}−2h

III

= NII

{
(w1 − w̄1)(w̄2 − w2)

(w1 − w2)(w̄1 − w̄2)(w1 − w̄2)(w̄1 − w2)

}2h

×�(1 − α2
−)�(3α2

− − 1)

�(2α2−)
(−η)2h+2α2

−F(α2
−, 1 − α2

−, 2α2
−; η) (93)

where h = h1,2 = α1,2(α1,2 − 2α0). Physical correlation functions are linear sums of these
conformal blocks where the coefficients are given by Cardy’s states.

3.5. Boundary states and conformal blocks

Before illustrating in specific examples, we mention how the above description of boundary
correlation functions fits into the conventional discussion of [7, 8], and see the validity and
limitation of the Coulomb-gas approach.

The charge neutrality conditions (67), (68) for a one-point function pick up the coefficient
of the corresponding Ishibashi state from a Cardy state, since α = αr,s is the only boundary
charge which gives a non-vanishing term. This agrees with our understanding that the
coefficients of Cardy’s state are essentially the one-point coupling constants of bulk (closed
string vertex) operators to the boundary (brane) [7, 8]. Once one-point coupling constants are
known, it is in principle possible to compute boundary multipoint functions since they reduce
to one-point functions after repeated use of bulk OPEs (figure 2(a)). In particular, we may
start such a procedure from the farthest point from the boundary (in the radial ordering sense),
approaching the boundary by performing OPE with the farthest remaining point one by one.
Due to naturality of CFT, such OPEs are translated into the fusions of operators,

[φ1] × [φ2] = [j1]

[j1] × [φ3] = [j2]

· · ·
[jp−2] × [φp] = [jp−1]

(94)

which define a conformal block with no subchains (figure 2(b)). As the fusion of primary
operators is equivalent to the map (55) between CBFSs restricted to BRST subspaces [14],
the conformal block of figure 2(b) is represented by our fixed boundary-charge correlator
(61) with α corresponding to [jp−1]. The Ishibashi state 〈〈jp−1| acts as a filter (or a half-
mirror) transmitting only the Virasoro representation [jp−1]. This property of Ishibashi states
is captured by boundary charges and charge neutrality.
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(a) OPE picture

φp
φ1

φ2

φp

φ1
¯

¯ ¯ ¯

¯
¯

¯

φ2

(b) Conformal blocks

φp
φ1

φ2

φp φ1
φ2

jp−1

p−1

Figure 2. OPE and conformal blocks of boundary p-point functions. Repeating OPEs in the bulk,
the boundary correlation function reduces to one-point functions (a). This can also be seen as
conformal blocks with internal channels ji<p−1 and boundary channel jp−1 (b).

Due to the absence of internal channels, two-point functions on the disc (or half-plane) are
completely determined by a boundary state, apart from the normalization of conformal blocks.
In the case of p-point functions with p � 3, however, states in the internal channels ji<p−1

cannot in general be determined uniquely even if the state in the ‘boundary channel’ jp−1 is
fixed (an example is the spin three-point function of the Ising model with j2 = σ , where j1

can be I or ε). Corresponding to this, the contours of (61) with p � 3 may be deformed
in several different ways to give independent convergent functions which are expected to
reproduce conformal blocks with different internal states. The relative coefficients of such
conformal blocks in a boundary correlation function cannot be determined by the boundary
state (as these conformal blocks belong to the same Ishibashi state) but should be constrained
by information of the bulk.

4. Ising model

We shall illustrate the method presented in the previous section in the example of the critical
Ising model. Before starting the actual calculations we note from the discussions of the
previous section that the non-unitary sector and the boundary states with charges outside the
Kac table do not contribute to correlation functions. Neglecting such unnecessary terms in
(51)–(53), for the bra-boundary states of the Ising model we have

〈Ĩ | ∼ 2−1(U 〈B(α1,1)| + U 〈B(α2,3)| + U 〈B(α2,1)| + U 〈B(α1,3)|)
+ 2−3/4(U 〈B(α1,2)| + U 〈B(α2,2)|) (95)

〈ε̃| ∼ 2−1(U 〈B(α1,1)| + U 〈B(α2,3)| + U 〈B(α2,1)| + U 〈B(α1,3)|)
− 2−3/4(U 〈B(α1,2)| + U 〈B(α2,2)|) (96)

〈σ̃ | ∼ 2−1/2(U 〈B(α1,1)| + U 〈B(α2,3)| − U 〈B(α2,1)| − U 〈B(α1,3)|). (97)

Since these are linear combinations of fixed boundary-charge states U 〈B(αr,s )|, the correlation
functions on the disc with physical boundary conditions Ĩ , ε̃ and σ̃ are given by linear
combinations of fixed boundary-charge correlators (61). Using the global conformal
transformation explained in the last section, we shall obtain correlation functions on the
half-plane and compare them with existing results.
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4.1. One-point functions of spin and energy operators

Let us first consider the spin one-point function. We may choose either σ = φ1,2 or σ = φ2,2.
Let, for definiteness, (r, s) = (1, 2) in the holomorphic part and in order to use the result
of the last section, (r̄, s̄) = (2, 2) in the antiholomorphic part. From (70) we immediately
note that only the state U 〈B(α1,2)| contributes to the one-point function, all other states giving
vanishing correlators. For the boundary condition Ĩ , the one-point function on the disc is

〈Ĩ |σ(z, z̄)|0〉 = 〈Ĩ |V1,2(z)V̄2,2(z̄)|0, 0; α0〉U
= 2−3/4

U 〈B(α1,2)|V1,2(z)V̄2,2(z̄)|0, 0; α0〉U
= 2−3/4(1 − zz̄)−1/8. (98)

Properly normalized one-point function is then,

〈Ĩ |σ(z, z̄)|0〉
〈Ĩ |0〉 = 21/4(1 − zz̄)−1/8. (99)

This is mapped onto the half-plane by using the conformal transformation (91), as

〈σ(w, w̄)〉Ĩ = 〈σ(y)〉Ĩ = 21/4(2y)−1/8 (100)

where y is the distance from the boundary. Likewise, boundary spin correlation functions for
the conditions ε̃ and σ̃ are obtained simply by picking up the coefficients of U 〈B(α1,2)| in (96)
and (97), and are normalized using 〈ε̃|0〉 = 1/2 and 〈σ̃ |0〉 = 1/

√
2. On the half-plane, they

are

〈σ(w, w̄)〉ε̃ = 〈σ(y)〉ε̃ = −21/4(2y)−1/8 (101)

and

〈σ(w, w̄)〉σ̃ = 〈σ(y)〉σ̃ = 0. (102)

Hence, Ĩ and ε̃ are indeed the fixed (up and down) boundary conditions and σ̃ is the free
boundary condition, as is stated in [6, 7]. In our Coulomb-gas formalism the relation between
one-point functions and the coefficients of Ishibashi states is explained by the neutrality of
charges.

Putting, say, (r, s) = (2, 1) and (r̄, s̄) = (1, 3), the energy one-point function is obtained
similarly. On the half-plane we have

〈ε(y)〉Ĩ = 〈ε(y)〉ε̃ = (2y)−1 (103)

〈ε(y)〉σ̃ = −(2y)−1. (104)

4.2. Spin two-point function

Next, let us consider the spin two-point function. Since σ = φ1,2, we can use the result
of subsection 3.3. There are only two values of boundary charges, −α1,1 and −α1,3, which
give non-trivial contributions to the correlator. The two corresponding states U 〈B(α1,1)| and
U 〈B(α1,3)| give rise to the two conformal blocks II and III, respectively, and the correlation
function is a linear combination of these conformal blocks with coefficients given by Cardy’s
states (95)–(97). Then,

〈Ĩ |σ(z1, z̄1)σ (z2, z̄2)|0〉
〈Ĩ |0〉 = 〈ε̃|σ(z1, z̄1)σ (z2, z̄2)|0〉

〈ε̃|0〉
= II + III (105)
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〈σ̃ |σ(z1, z̄1)σ (z2, z̄2)|0〉
〈σ̃ |0〉 = II − III (106)

where the actual forms of II and III are given by (83) and (87), with a = −1/8, b = 3/8 and
α2

− = 3/4. In this case the hypergeometric functions reduce to

2F1

(
−1

4
,

1

4
,

1

2
; η

)
=

√
1 +

√
1 − η√

2
(107)

2F1

(
3

4
,

1

4
,

3

2
; η

)
=

√
2(1 − √

1 − η)√
η

. (108)

Using (107), (108) and the conformal transformation (88), we find the two-point functions on
the half-plane,

〈σ(w1, w̄1)σ (w2, w̄2)〉Ĩ = 〈σ(w1, w̄1)σ (w2, w̄2)〉ε̃
= Ñ√

2

{
(w1 − w̄1)(w̄2 − w2)

(w1 − w2)(w̄1 − w̄2)(w1 − w̄2)(w̄1 − w2)

}1/8

×
(
NI

√√
1 − η + 1 + NII

√√
1 − η − 1

)
(109)

〈σ(w1, w̄1)σ (w2, w̄2)〉σ̃ = Ñ√
2

{
(w1 − w̄1)(w̄2 − w2)

(w1 − w2)(w̄1 − w̄2)(w1 − w̄2)(w̄1 − w2)

}1/8

×
(
NI

√√
1 − η + 1 − NII

√√
1 − η − 1

)
(110)

where Ñ = �(1/4)2/�(1/2). Studying the behaviours away from the boundary (we accept the
convention that two-point functions of bulk operators are normalized as 〈φi(w1)φj (w2)〉 =
δij (w1 − w2)

−2hi ) and comparing the leading terms with the OPE coefficients of [8], the
normalization of the conformal blocks is fixed as NI = NII = �(1/2)/�(1/4)2.

This result was obtained long time ago [13], by solving a differential equation to find
the two conformal blocks II, III, and then fixing the coefficients by considering asymptotic
behaviours of the correlation function. The (relative) coefficients of the conformal blocks are
now attributed to the coefficients of Cardy’s states in our Coulomb-gas approach, although we
have used the asymptotic behaviours to fix the normalization of each conformal block.

4.3. Energy two-point function

Finally we derive the energy two-point function in our formalism. As ε = φ2,1, the calculation
is parallel to the case of the spin two-point function. From the charge neutrality condition we
find that non-vanishing correlators arise from the states U 〈B(α1,1)| and U 〈B(α3,1)|. However,
as none of the boundary states (95)–(97) contains U 〈B(α3,1)|, only U 〈B(α1,1)| gives non-trivial
contribution to the correlation function. Hence, the energy two-point function does not depend
on boundary conditions. After a simple calculation we find, on the half-plane,

〈ε(w1, w̄1)ε(w2, w̄2)〉Ĩ ,ε̃,σ̃ = N
(w1 − w̄1)(w̄2 − w2)

(w1 − w2)(w̄1 − w̄2)(w1 − w̄2)(w̄1 − w2)

×�(−1/3)2

�(−2/3)
F (−2,−1/3,−2/3; η). (111)

The normalization constantN is determined as N = �(−2/3)/�(−1/3)2, by considering the
off-boundary behaviour. The hypergeometric function turns out to be an algebraic function
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F(−2,−1/3,−2/3; η) = 1 − η + η2, and using the coordinates wi = xi + iyi, w̄i = w∗
i =

xi − iyi(xi, yi ∈ R), the correlation function (111) is written as

〈ε(x1, y1)ε(x2, y2)〉Ĩ ,ε̃,σ̃ = 4y1y2

[(x1 − x2)2 + (y1 − y2)2][(x1 − x2)2 + (y1 + y2)2]
+

1

4y1y2
.

(112)

This agrees with the result of [13].

5. Summary

In this paper we have described a novel method of calculating correlation functions of two-
dimensional CFT on the disc and on the half-plane. We have used the free-field construction of
boundary states developed in [18], and derived boundary correlation functions for the boundary
states classified by Cardy’s method. The key feature of our formalism is the neutrality of bulk
and boundary charges, which associates the coefficients in Cardy’s boundary states directly
with the linear combinations of conformal blocks. Thus we could unify the two important
parts of boundary CFT, namely, boundary correlation functions [13] and consistent boundary
states of Cardy [6], by using the Coulomb-gas picture. We have checked the formalism in the
Ising model, and shown that our method reproduces the known results.

Cardy’s classification of boundary states has been generalized by Lewellen [8] and Pradisi
et al [9] beyond the diagonal models, and the Coulomb-gas technique is also known to be
applicable to more general CFTs, such as WZNW models [29] and CFTs with W-algebra
[30–32]. We therefore expect that the method discussed in this paper may be applied to such
CFTs relatively easily. In particular, from a string theory point of view, application to WZNW
theories seems to be quite fruitful since it would provide an alternative method of finding
correlation functions with D-branes on a group manifold. We shall discuss such issues in
separate publications [33].
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